
MississippiState
UNIVERSITY

Center for Air Sea "[echnology

DEMONSTRATION OF A REAL TIME
CAPABILITY TO PRODUCE TIDAL

HEIGHTS AND CURRENTS FOR
NAVAL OPERATIONAL USE:

A CASE STUDY FOR
THE WEST COAST OF AFRICA

(LIBERIA)

by

Avichal Mehra, Valentine AnantharaJ,
Steve Payne, end Lakshmi Kantha

Te¢hnlcel Note 96-2
24 May 1996

19960705083

i Approved for publlo release; dletdbutlon Is unlimited. !

i

Mlssleelppl 8tote Unlvemlty Center for Air lie., Technology I8tennis 8rooe ¢.enterf MS 31)5...2_.(1000,'



"DISCLA RNOTICI

THIS DOCUMENT

QUALITYAVAILABLE.

IS BEST

THE COPY

HJRNISI_D TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES-WHICH DO NOT

I_PRODUCE LEGIBLYON BLACK

ANDWHITEMICROHCHE.



TECHNICAL NOTE 96-2

DEMONSTRATION OF A REAL TIME CAPABILITY
TO PRODUCE TIDAL HEIGHTS AND CURRENTS

FOR NAVAL OPERATIONAL USE: A CASE

STUDY FOR THE WEST COAST OF AFRICA(LIBERIA)

by

Avichal Mehral, ValentineAnantharajl,

Steve Payncl,Lakshmi Kantha2

]MississippiState University Center for Air Sea Technology, Building 1103,

Stennis Space Center, MS 39529-6000

2Colorado Center for Astrodynamics Research, University of Colorado, Campus
Box 431, Boulder, CO 80309-0431

24 May 1996

! ii i ml

This research was supp(med by the Department of the Navy, Space and Naval Warfare
Sys4ems Command urzler NASA Contract NAS13-564 Delivery Order 73 with the Missiaippi
Research C,ona_um. The opinions, findings, e,cnolusiona, and recommendations expressed
in this publication are those of the amhcm, and do not necessarily reflect the views of the U.S.
aovemm lqoometat,eadoat, t Jhm,ldbe



EXECUTIVE SUMMARY

This report documents an existing capability to produce operationally relevant prod-

/ ucts on sea level and currents from a tides/storm surge model for any coastal region

• around the world within 48 hours from the time of the request. The model is ready for

transition to the Naval Oceanographic Off'c,e (NAVOCEANO) for potential contingency

use anywhere around the world. A recent application to naval operations offshore Liberia
illustrates thls.

In April 1996, political turmoil in Liberia prompted an emergency evacuation of U.S.

Citizens from Monrcvia, prompting NAVOCEANO to anticipate a possible U.S. Navy op-

eration along the south-we._tern coast of Africa. The ADCIRC model (Luettich et al., 1992;

Westerink et aJ., 1994) providing the present tidal prediction capability at NAVOCEANO,

could not be readily extended to the region. So, NAVOCEANO contacted CAST and CU

to see if they could use their relocatable R&D model for support. Working together, MSU

CAST, CU and NAVOCEANO successfully deployed the CURReNTSS (Colorado Univer-

sity Rapidly Relocatable Nestable Tides and Storm Surge) model that predicts sea surface

height, tidal currents and storm surge, and provided operational products on tidal sea level

and currents in the ii'doral region off south-western coast of Africa. This report summa-

rizes the reCults of this collaborative effort between CAST, CU and NAVOCEANO in an

actual contingency use of the relocatable model, summarizes the lessons learned, and

provides recommendations for further evaluation end transition of this modeling capability

to operational use.

The quality of operational products depends to a large extent on the availability of

accurate, fine-resolution data bases such as bathymetry/hydrography data sets and wind

forcing (NORAPS/COAMPS). It is recommended that NAVOCEANO establish these data

bases in advance, preferably on a global basis, and i! that is problematic, at least for

high-risk regions so that pote._tlal operational numerical models can be relocated suc-

cessfully, rapidly and efficiently. For emergency situations where a high resolution data

base is not already available, an appropriately trained tiger team should be established to

derive the required data sets for any region in a short time frame.

The Liberlan application has provided useful information on th_ rapid relocatability,

real time operation capability, and robustness of the model. It has demonstrated that with

some reflnement_ it can be transttioned to operational use. Research and operations

personnel at NAVOCEANO Wadlghtlng Support Center (WSC), Ocean Modeling Division

(Code N531) and MSU CAST should determine the details, tn addition, it is desirable that

the CURReNTSS and the ADCIRC models be compared in a common environment where

enough evaluation data are available, to ascertain the strengths and weaknesses of each

so that the two models mw be employed most advantageously in a complementary mode.



1. INTRODUCTION

The world's littoral zones, which include semi-enclosed, marg,nal and coast,_loceans,

have become increasingly in,port,ant for naval operations. Uttoral operational needs such

as logistics demand a wealth of environmental information, that includes tides and storm

surges. Because of the dearth of bottom pressure gage data in the coastal seas, boI.h

here and abroad, the only practical alternative for tidal sea surface height (SSH) is to use

numerical models. High reselution models of coas_atwaters have the potential to provide

this information, provided they can be nested in rel_,tive=yand necessarily (_oarser tidal

models of the world's of ocean basins.

In a joint collaborative effort under SPAWAR/ONR fundinfj, Colorado University (CU)

and Mississippi State University Center for Air Sea Technology (MSU CAST) have de-

veloped such a model, CURReNTSS (C_oloracloUniversity Rapidly Re_locat_b!eN_stable

Tides and S_torm_urge). Because of a political crisis in Liberia, CAST was provided an

opportunityto test the rapid model-relocation capability in a real contingency.

InApril 1996, a political turmoil In Uberla prompted an emergency evacuation of U.S.

Citizens/rom the capital city of Monrovla, prompting NAVOCEANO to anticipate a possible

U.S. Navy operation along the south-western coast of Africa. The ADCIRC model, provid-

Ingthe present tidal prediction capability at NAVOCEANO, could not be readily extended

to the region. NAVOCEANO was aware of the Jointcollaborative development effort of the

CURRENTS model at CU/MSU CAST and contacted CAST to see i! we would exercise

CURReNTSS to support NAVOCEANO under this situation. Becau'..e of an earlier suc-

cess in a feasibility study of the rapid model relocation ina coastal area near San Diego,

California (see Appendix A), CAST agreed to provide this support.

This report summarizes the reeult_ of thiscollaborative effort between CAST, CU and

NAVOCEANO in a real contingency relocationof the CURRENTS model, summarizes the

lessons learned end provides recommendations for the further evaluation, enhancement

and transition of this modeling capability to the operatior_l Navy. The report is organized

as fo!!ows _t=_'tion2 provides a bdef model descriptionfollowed by the relocation method-

ology in Section 3. Sectldn 4 deals In detail with the CURReNT$S model relocation effod

to the Llberlan coast. Sir_e rapid relocation of the model Is a major concern, we recreated

the sequence anc; time line of events as they developed. This recreation brought into fo-

cus the major bottlenecks where the streamlining process needs to be emphasized. This

is followed by the model prediction ru_ conducted on the _arse grid and the nested

fine gdd therein. To delineate the effect of the atmospheric forclnge on the predictions



of tidal heightsandcurrents,the modelis runwith astronomicaltidal forcingaloneand
thenwilhbothastronomicaltidesand surface wind forcing. In Section 5, some problems

encountered in the CURRENTS Implementation are highlighted and Section 6 provides

some concluding remarks and recommendations. Also, since the San Diego implemen-

tation provided the necessary background and Impetus to undertake this support task for

th_ Libedan operation, Its results are included as Appendix A.

2. BRIEF MODEL DESCRIPTION

CURReNTSS is a finite difference, explicit, vertically-integrated barotropic model ca-

pable of assimilating tidal componen*,or soa level data from coastal tide gages and from

any boston pressure ga0es P.vallable. It is fully non-linear and a sub-component of the

NAVOC;_ANO/C_J 3.D operational model. The model incorporates direct astronomical

tidal forcing (tide potential) and can also utilize sudace forcing (winds stress, pressure

fields) trom atmo_:_heric numer:ca( weather prediction (NWP) models and analyses, to

p,'edict storm sur{:es. The open _undsry conditions for tides are obtained from a global

tidal model run at I/5 ° re_o"Jtic_.(i_3th_'. 19,95; K3ntha et el., 1995), which is readily

accessible from the g:_phic_] u,_eri_e=tece (GUI)

The GUl defaults for bottom ba_hy.netry t(_ the t-'TOPOS database, which can be

edited within the GUI and setup for the moCel (Kantha =_tel., 1993; Pontius et el. 1994).

It is also posjIble to import bathym_ry/tom other cl_ta'_ases Into the GUI. The model can

be run with ar_y number of Uda_components in£,'luciing_ongterm and compound tides. It

employs a sir_ple data asslmilati(:,n _ec_ure by repladng the model predicted SSH at

predetermined Intervals by a welgntsd sum c._the model prediction and the observed

SSH from the tide/bottom pressure at that gf,d point, the weights are determined a priori.

The tide gage data come from the data base at the International Hydrographic Organiza-

tion(1979), supplemented by the Admiralty charts (1993). This database is also available

from the GUI and relevant tidal stationseasily extracted and edited prior to assimilationby

the model. Further details on the methodology and governing equations for the model can

be found in Kantha st a1.(1993); see also Pontius et el. (1994). Detailect results are also

available as a multimedia Hypertext documentat http:llwww.cest.mastate.edulTIdea2D.

8. METHODOLOOY

For applioatlons to high resolution sea levels and currents alon0 any c,_ut, the pro-

cedure Is to nest a high resolution local barotropt¢ model at the desired resolution (1 -

5 kin) and domain enoompasslng the coastal region of Interest, within • larger domain



at a rather coarse resolution (5 - 20 kin). This is necessary for efficiency and practical-

ity because the numerical modeling strategy used here relies on a finite-difference ap-

proach. It is an alternative approach to the finite-element based ADCIRC model that uses

telescoping dements with increasing resolution as the coast is approached. However,

CURRENTS model is expected to provide somewhat more robust results for barotropic

(vertically-integrated) currents in the water column.

The model is multiply nestable. The approach works best when the data bases

needed to initialize and force each nested component have appropriate resolution. A

similar problem exists for the finite element approach as well - the resolution of data

bases must be compatible with the highest grid resolution. The approach is to run the

coarsest resolution CURReNTSS model with tidal boundary conditions derived from the

CU high resolution global tidal model {that assimilates altimetric and tide gage data) and

atmospheric pressure and wind stress derived from NWP products. The SSH output of

this model is saved on the boundaries of the nested model at each time step for use in pro-

viding the boundary conditions to' run the nested model. The nested modeling approach

has been tested only for double-nesting, although it should work in principle to more than

two levels of nesting.

4. AN OPERATIONAL CASE STUDY

For a model to be made operational, it is essential that the model be well-formulated,

carefully calibrated and adequately validated. An initial feasibility study to check the via-

billty of operational use of CURReNTSS model and to validate its results was performed

eadler this year. The area chosen for this analysis was the west coast of the United States

near San Diego, California, where high resolution winds and pressure fields were _tvail-

able from the DoD Master Environmental Ubrary (see http://www-mel.nrlmry.navy.mill).

The model results were evaluated for both the "tides-only" mode as well as the "storm

surge" mode, using wind forcing from COAMPS for January 1996. The details for the

model setup and the results are presented in Appendix A.

A second opportunity to demonstrate the ralocatabtlity of CURReNTSS occ_Jrred in

/_'fi 1996, when a political turmoil In the western African nation of Liberia prompted an

evacuation effort by the Navy from Monrovla, the capital city of Liberia. A chronological

listing of events for providing the Navy with real time tidal heights and currents for west

coast of Afrlca Is presented in the next _ctlon. This llsting is followed by a description of

the (x)mputatlonal domain and letup parameters for the model. Finally, results from the

model are analyzed and dlscuned.



4.1 Chronological Listing Of Events And TasksAccomplished

04/12/96:

• NAVOCEANO (Code N531) Indicated there was potential for an operational need for

information on tidal heights and currents for the coast of Liberia. CAST agreed to

attempt to provide this data using the relocatable CURReNTSS and the Tidal GUI.

• CAST's Tidal GUl provided the bathymetry using the 5' DBDB5 data base, tidal sta-

tion data (for assimilation) and boundary conditions for the selected coarse grid (see

Section 4.2).

04/13196:

• The model was Initialized and CURReNTSS model completed a successful tidal run

for the coarse grid. Significant support was provided by the University of Colorado.

• The output from the coarse grid run looked promising.

• The Tidal GUI was again used to setup the bathymetry and computational oomain 1or

the high resolution nested grid near Monrovia (see Section 4.2).

04/14/96:

• The high resolution tidal run was completed successfully and the output analyzed.

• The NOGAPS surface forcing fields were obtained and reformatted for storm surge

analysis.

04/15/96:

• CAST provided the results for the tidal model runs to NAVOCEANO.

The results were promising but CU, CAST end NAVOCEANO were concerned about

the aocurecy of the DBDB5 bathymetry and the resulting coastline used for the nested

high resolution model run. There was an offset of 10 km tn the shoreline when com-

pared to the World Vector _horeline. The DBDB5 bottom depths can also be in ex-

coss of 100% error in shallow water.

NAVOCEANO agreed to provtde accurate high resolution bathymetry (from shoreline

to 200 m depth) using madtlme charts.

CAST further refined the coastline in the bathymevy using the World Ve=or Shoreline

database from the Tidal QUI.



04/16/96:

• NAVOCEANO and CAST put together a higher resolution digitized bathymetry for the

area of interest based on contoured maritime charts.

• The high resolution nested model was rerun using the refined coastline and improved

bathymetry.

04/17/96:

• The output for the new run was post-processed and analyzed. The results were

delivered to the Weather Watch workstation within the W5 C at NAVOCEANO. The

WSC requested reformatting of the model output (ch&ngo of units, time series etc.)

to enhance the operational relc vance and ease of use of the r_suits.

• CAST provided NAVOCEANO with reformatted model results. (see Section 4.3)

4.2 Model domains and set-up

At the very outset, the regional extent and resolution of the nested models were de-

cided upon in close consultation with NAVOCEANO and CI I.

4.2.1 Coarse Grid

The physical domain for the coarse grid stretches from the equator to 15 ° N, and 5 °

to 20 ° W (see Figures la and lb). The area of interest includeo the cities of Monrovia

(Liberia), Freetown (Sierra Leone) end the entire Liberian co_st, At _ resolution of 1/5 ",

the model was run on a 76 x 76 grid on an SGI workstation, As £1own in Fig. la, the

domain had open boundaries on all four sides. These boundary ¢onJJtions were provided

usin0 the database of global results (at 1/5" resolution) available via the GUI. In all, 35

tidal stations were found In this domain, but only 22 were retained. The others were

excluded based on their location (protected harbors, stc). The same weight (the gage

was weighted 90 %, the model 10 %) was given to all tide gages for assimilation in the

model. The bathymetry was also setup using the GUI and the DBDB5 database (see

Figure lb).

The barotropic (external) time step was chosen as 30 seconds and the bottom drag

coefficient as 0.0025. First, the cosine grid model was run for 15 to 26 April with a prior

spin up of one day. Boundary conditions for the fine grid model were saved every time

step. These were then Interpolated to the fine grid reso4ution and the fine grid model was

then run to provide the result8 needed 8t four locations mentioned below, Because of

their etrateglo Importance, two locatlo.e (Freetown and Monrovla) were selected to save

time series output for tidld heights and oJrrents.
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4.2.2 Fine Nested Grid

The high resolution nested grid extended from 5 oto 8.4° N, and 8.7° to 13.2 ° W (see

Figures la and lc). At 1/20 °, the grid resolution was four times finer than the coarse grid.

The selected domain yielde0 a 89 x 59 grid with two open boundaries (West and South).

The boundary conditionswere provided frc_mthe output of the coarse model run saved at

the open boundaries of the nested domain. Data from the only two tidal gages available

were assimilated.

The barotropic 'ime step was reduced to 8 seconds. The bottom drag coefficient

was kept the same. A refined coastline and an accurate hi0h resolution bathymetry was

used (see Figure lc). Time sedes output for ti_jl heights and currents was saved at

four locations evenly located along the coast: Sheather Rock in Sierra Leone and Kasi,

Monrovla and Little Kola in Liberia.

4.3 Results (Tides Only)

4.3.1 Coarse Grid

The coarse grid model was run for 11 days from rest with the starting date of April

15, 1996. The first day was use:l for ramp-up and results predicted for the next 10 days

through Apdl 25, 1996. Only forcing frol,nastronomical tides was applied and seven tidal

constituents: M2, S_, N=, K=, Kz, Pz and Q1 were included (assimilation data for O_ com-

ponent was unavailable and so O2 was excluded).

The time series output for tidal SSH and currents at the two location chosen a priori,

Freetown (8.5° N, 13.23" W) and Monrovla (6.33" N, 10.8 ° W), are shown in Figs. 2 and

3 respectively. The tidal elevation above mean water level (measured in feet) is shown in

blue and the magnitude of the barotroplc tidal currents (measured in knots) is shown in

red. From the plots, it can be seen that the semi-diurnal tidal constituents dominate the

tides. The maximum tidal heights are 3.6 _t. at Freetown and 2.25 ft. at Monrovia both

occurring on April 16th. As expected, the maximum tidal currents also occur at the same

time and range up to about 0.156 kts (at Freetown). In comparison, the currents were

foundto be significantly smaller at Monrovia.

To generate streak plot movies, output was also saved at evm7 half hour Interval.

A few snapshots of these streak plots are shown In Flge. 4 and 5. The maximum tidal

currents are found I_orthof Freetown along the Sierra Leone coast which can be attributed

to the presenoa of a broad continental shelf at the northernboundary of the domain,
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Figure 4, Streak-Plot of Tidal CurmM, for Coarse Gdd Domain

for 16 April.
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4.3.2 Coarse Grid

After completin_ the coarse grid run, the model was run for an identical duration for

the nested high resolution grid. Once again, only astronomical forcing was provided and

the sane seven tidal components were included.

Time series data was saved at four locations: Sheather Rock (7.73 ° N, 12.78 ° W)

in Sierra Leone, Kasi (7.05 ° N, 11.8° W), Monrovia and Uttle Kola (5.65 ° N, 9.85 ° W) in

Liberia. Once again, the semi-diurnal tidal components were found to dominate the tides

(Figs. 6 - 9). The maximum tidal heights occur at Sheather Rock, in Sierra Leone, in

excess of 3 ft. At Uttle Kola, in Uberia, the maximum tidal heights were less than 2 ft. As

seen earlier in the coarse grid results, the tidal currents are also maximum (approx. 0.021

kts) at Sheather Rock. Overall, the results from both coarse and fine grids wer_ found to

be very consistent in magnitudes and temporal variations.

Information for streak plots for tidal currents was again saved at every half hour In-

terval. A few samples of these around Monrovia are shown in Figs. 10 - 12 lor April 20th.

Maximum tidal currents at low tide occurred at 0200 hours GMT until a Flood stage was

achieved at 0750 hours GMT at Monrovia. Thereafter, maximum tidal currents occurreJ

again at 0900 hours GMT for high tide: During this Flood event, the maximum magni-

tude of tidal height was about 1.7 ff and that of current was 0.08 kts. As expected, the

fine grid results allowed more detailed features of tidal currents to be resolved, however,

magnitudes were not significantly different.

4.4 Results 0NIth Wind and Pressure Forcing)
4.4.1 Coarse Grid

The only surface forcing (from Meteorological models) available for the region of in-

terest and time-frame was from global NOGAPS at 1.25 ° resolution. The CURReNTSS

model was run for 3 days using the above surface forcing starting on April 15, 1996. Orce

again, the first day was treated as spin-up time anclresults predicted for the next 2 days

for tides and stormsurge. All the setup parameters were kept identical to those discussed

inthe previoussection, except for the forcingwhich now included both, astronomical tides
as well as winds.

Time series results fur 8SH and cur,ants, with surface wind forcing, are presented In

Figure 13 (Freetown) and Figure 14 (Monrovla). On comparing with Figures 2 end 3, wind

forcing had only a marginal effect on sea level but increased the maximum magnitude of

currents to 0.17 Kts (at Freetown) and 0.042 Kts (at Monrovla). The effect on currents
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Figure 10. Maximum Currents at Monrovia at Low Tide
( Fine Grid )
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Figure 11, Tidal Cur rents at Monrovia at Flood.
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Figure 12. Maximum Currents at Monrovia at High Tide.
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Prototype Tidal Model Elevation & Depth Averaged Currents
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Prototype Tidal Model Elevation & Depth Averaged Currents

with Surface Wind Forcing
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at Monrovia (increase of almost 425 %) was much greater than at Freetown (increase of

9%). Though the magnitude and variation of wind stress at the two locations were similar,

signif'cant increase in barotropic currents at Monrovia due to winds was because of much

smaller currents produced there due to the astronomical tides alone. Tides continue to be

dominated by their semi-diurnal constituents.

Figures 15-16 show a few sample streak plots _ )r the :esultant barotropic currents

with wind forcing for the coarse grid domain.

4,.4.2 Fine Grid

As before, after completion of the coarse grid model run with wind Iorcing, the fine grid

model was run successfully for 3 days starting from Aptli115, 1996. All setup parameters

were once again kept the same, except ior the forcing which now included wind stresses.

Time series outputs at the four locations (Sheather Rock, Kasi Monrovia and Little Kola)

are presented in Figs. 17 -20.

The sea level was found to be higher because of winds at all the above locations,

with the maximum height occurring at Sheather Rock (about 3.6 feet) on April 17 (Figure

17). The tidal currents also increased significantly with maximums o,'..,'urring on 17 April

(at Kasi and Monrovla) of about 0.06 Kts. These maximums correspond to the time of

maximum wind stresses (and minimum pressures) occurring on April 17 (see Figures 16

and 19). On comparing with results from as:ronomical tidal forcing alone (Figs. 6 - 9),

the phases and amplitudes of sea level were similar in their temporal variations, unlike

the tidal currents which showed substantial differences in both phases and amplitudes.

Streak plots for movie animations of tidal currents for the nested grid were also gen-

erated and saved every half-hour. A few snapshots are shown in Figs. 21 - 22.

6. PROBLEMS ENCOUNTERED AND SUGGESTED REMEDIES FOR THE FUTURE

The above case _udy demonstrates a real time operational capability tor predicting

see level and vertically averaged currents in any region of interest around the wodd using

the CURReNTSS model. Using this approach tidal heights and currents can be predlot_

for any day in advance. Similarly, using FNMOC output, 2-clay forecasts can be made of

sea level and vertically averaged currents in any region, should a contingency arise. But

a number of obstacles had to be overcome along the way which must be a0dressed, an0

the lessons learned thereof, Implemented lot the future.

These problems can be sub-divided into issues pertaining to the GUI environment anti

those relevant to the numerical model CURReNTSS, A few others, unrelate¢l to either ol

the above, are also discu=imct.
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Figure 15, Streak-Plot of Tidal Currents for Coarse Grid Domain
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Figure 16, Streak-Plot of Tidal Currents for Coarse Grid Domain
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Figure 21, Streak-Plot of Tidal Currents for Fi.e Grid Domain
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5.1 GUi Issues

. Pertaining to the bathymetry for the high resolution (1/20 °) nested grid, the inter-

polations from DBDB5 database resulted in significantdiscrepancies in not only the

bottomdepths but also between the modeled coastline and the physical coastline (of

the order of 10kin). A better resolved and more accurate bathymetry database in the

GUI will help alleviate this problem.

• Tidal station database must be expanded to include any recent observed tidal con-

stituents data.

. Significant effort was required to set up the forcing fields for the storm surge predic-

tion. A standardization for available (both current and future) surface forcing fields

from meteorological models with regards to formats (filenames, data and projections)

would help streamline the process.

• Post..processlngoptions in the GUI must be expanded to generate results ready for

immediate operational support (Input in this regard from NAVCCEANO/WSC would

be helpful).

• A'help" Index explaining all the various optionsavailable to a novice GUI user needs

to be added.

5.2 Model Issues

• The CURReNTSS model uses a simple data assimilationprocedure. It may be useful

to explore a more sophisticated assimilation scheme based on optimal interpolation.

• The results presented tn Section 4.3 did not include any long term (equilibrium) tides

or nodal factors for astronomical forcing which are easily added to the model. While

the former are considerably small and can be neglected, the latter can influence re-

suits more significantly. The information on nodal factors is readily available from

Admiralty tables on a monthlybasis.

• No data were available for verification of the 2-day sea level and current forecasts off

the coast of Liberia. However, tidal sea levels and currents appear to be reasonably

well simulated.

• In future work, the CURReNTSS model, a sub-component of the 3D NAVOCEANO/CU

operational model, will be enhanced to perform 3-D simulations that Include tides and

tidal currents. The 3-D model would be more suitabte to obtain acourate tidal cur-

rents In the entire water column (1.¢Including barocl"_iccomponent) using the same

methodology.
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5.3 Miscellaneous

• On the second day of the operational case study, the network went clown disrupting

communications between CAST and CU.

• On the third day, one of the file servers at CAST was accidentally damaged. All the

relevant files for the model had to be transported to a stand-alone workstation.

The above problems led to unavoidable delays during the operation. But the lessons

learned will help eliminate them in the future and expedite the total operation by approxi-

mately 50%.

8. CONCLUDING REMARKS

Responding to a NAVOCEANO request to provide support in predicting tidal heights

and currents for the Libeflan coast, MSU CAST and CU, in a joint effort, implemented

the CURReNTSS model in the region to produce operationally useful products within four

days from the time of request. This demonstration shows that:

• The analysis of the operations indicates that this time can be significantly cut. The

ultimate goal of relocating the model to any region In the world and obtaining

products within 48 hours Is readily attainable.

• While regular collaboration and communication among NAVOCEANO, CAST and CU

played an important role in obtaining the needed results in a short time, more precise

specifications on NAVOCEANO desired products would be needed for an efficient

implemen'qtion of the model in the future.

• The quality of operational products depends to a large extent on the availability of

accurate, fine-resolution data bases such as bathymetry/hydrography data sets and

wind forcing (NORAPS/COAMPS). It Is recommended that NAVOCEANO establish

these data bases for high-risk regions In advance so that potential operational numer-

ical models can be relocated successfully and efficiently. For emergency situations

where a high resolution data base is not already available, an appropriately trained

tiger team should be established to dedve the required fine-resolution data sets for

any region in a short time frame.

• The reaHIfe application of the CURReNTSS model to a contingency situation pro-

vided useful information on its rapid relocatabllity, real time operation caps[ llty, and

robustne,s. However, some additional work is needed on model parameter specifi-

cation and the graphical user interlace. Research and operations personnel at NAV-

OCEANO WSC, Code N531, and MSU CAST should determine the details.



• The exercise of the model in a ,semi-operationalmode has demonstrated that after

some refinements it can be transitioneclas an operational model. It is recommended

that this transition be formalized, documented and started immediately.

, CAST is aware of the ADCIRC model capability at NAVOCEANO developed by the

Army Coastal Engineering Research Center at Vicksburg, MS. Being a finite element

model, it is relatively difficultto configure it in a new ocean region because of the ad-

ditional effort and resources Involved in generating the model grid. It is desirable that

the CURRENTSS model and the ADCIRC model should be compared in a common

environment where enough model evaluation data are available, to ascertain their

strengths and weaknesses so that each may be employed most advantageously in a

complementary mode.
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APPENDIX A: VALIDATION OF CURReNTSS MODEL NEAR

SAN DIEGO

While the results from the relocatable model for Liberia look reasonable, there were

no data for verification of the results. Also no high resolution operational atmospheric

model outputs were available for model forcing. This affected at least the high resolution

sea level and current forecasts. To test the model skill when high resolution bathymetry

and high resolution atmospheric forcing were available, the model was applied to the San

Diego and Camp Pendleton regions off the west coast of the U.S. The principal consid-

eration for selection of these domains was the availability of shake-down results from the

triply-nested COAMPS atmospheric model off the west coast. The highest resolution re-

sults available were from the 5 km COAMPS grid. Therefore the coarsest CURReNTSS

model domain was chosen to be the same as this domain, and the resolution also the

same. A 500 m Camp Pendleton and 1 km San Diego Bay nested domains were also

chosen. Fortunately, high resolution bathymetry was also available for this region, so

that a realistic simulation could t,e made. The results for Camp Pendleton were not as

interesting ,.,s those for San Diego Bay and hence will not be presented here.

A1. Model Domains And Setup

A1.1 Coarse Gdd

The domain for the coarse grid extended from 119.97 ° to 116.58 = W and from 31.87 °

to 34.5 ° N (see Figure A1). The gdd resolution was 5 km (seTected to match the finest

COAMPS output) resulting in a 64 x 59 grid. It covered the California coast including

the cities of San Diego In the south to Santa Barbara in the north. The bathymetry was

interpolated from an available high resolution database. The GUI provided data from 9

tidal stations In this region which were assimilated into the model with a fixed weight-

Ing parameter (0.9). The GUI was also used to set up the boundary conditions for the

o_n bound_!es, south and west, and only seven linear tidal constituents were included,

namely Ms, Ss, N=, K:, K1, P= 3nd Qj. The model was run with both the astronomical

tides and with surface wind forcing (obtained from COAMPS) to predict tides and storm

surge.

The external (barotropic) time atep was 8 seconds. In all, 13 locations were chosen

Ior saving time-series output for tidal heights and currents.
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Figure A1.



A1.2 Fine Nested Grid:

The nested fine grid was centered arouno _._r_ Diego Bay at a resolution of 1 km,

117.28 ° to 117.03 ° West and 32.32 ° to 32.82 ° in the North (see Figure A1). The total

number of grid points at this resolution was 24 x 57. The bathymetry was obtained simi-

larly as above and no tidal station data were assimilated. The boundary conditions for the

open boundaries were provided by the output of the coarse model run. Because of the

higher resolution, the time step was reduced to 5 seconds. Time series output w_s saved

at 5 different locations to compare results with the coarse model output.

A2. Results

The coarse (5 kin) _.nd fine (1 km) resolution models were run for Jan 2 - 15, 1995,

with a one-day' spin up both in the tides alone and tides plus st¢_rm surge modes. Figure

A1 shows the domains for the two models. Figure A2 shows a comparison of the model-

predicted and observed M2 tide at 4 points along the coast of the coarse grid model (see

Figure A1 for the locations of the points) from the tides only run, showing that the method-

01ogy employed provides reasonable results for tides. Note that these poin*,s were not

assimilated into the model. Figure A3 shows the sea level time ser_es at the same four

points from the tides plus storm surge run as well as tides only run that included M 2, $2,

N_, K2, K1, PI and Q1 tides. O_ was omitted because the data base did not have data on

Oz for assimilation. Nodal factors and long term tides were also Ignored. The difference

between the tides only and tides plus surge models showed the substantial influence ot

atmospheric forcing on sea level. However, even stronger influence would have been felt

if the storm had not veered away trom the region in a r_orth-northeasterly direction instead

of impacting the region head-on. Also, the tides were predominantly diurnal, modulat_

somewhat by semi- diurnal or_es, as expected for the west coast of the U.S.

Figure A4 shows the time series of sea level pressure, wired stress, sea level and

vertically integrated currents at one of these poir_ts. Results from this same point trom

the fine grid model will be presented later for comparison for surge only simulation (tides

were omitted to bring out aspects ol atmospheric forcing). Note the nearly inverse barom-

eter response of sea level to stmoaphedc pressure forcing. Figures A5 and A6 show

snap shots of vertically-averaged currents for two selected times during the model run.

(Animations for the entire model run are available at MSU CAST). Note the strong cur-

rent vectors which correspond to vigorous Inertial oscillations. These are well-correlated

wlth topographic features resolved because of the high resolution bathymetry used in the

model.
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Figures A7 and A8 show the same results as Figures A5 and A6 but from the high

resolution San Diego model run using the boundary conditions generated by the above

coarse resolution model. The sudace forcing is the same as that used in the coarse grid

model, but interpolated to the fine grid. Note the small topographically-trapped eddy-

like features (animaUons for the entire period of model simulation are also available at

MSU CAST) captured by the model because of the accurate high resolution bathymetry

available for the region. The high resolution also captures features in the fine resolution

model not seen in the coarse resolution results.

Finally, Figure A9 shows time series at the point mentioned above, but from the fine

resolution model. The results for sea level are similar to that obtained from the coarse

resolution model, while the currents are stronger. This is as expected since unlike SSH,

currents are influenced strongly by topographic features and hence the finer the topogra-

phy resolved, the more accurate the currents are likely to be.
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